
nvtx
Release 0.2.4

NVIDIA Corporation

May 24, 2022

CONTENTS

1 Quick Demo 3

2 Contents 5
2.1 Installation . 5
2.2 Tools for annotating code . 5
2.3 Automatic function annotation . 8
2.4 Reference . 8

3 Indices and tables 9

i

ii

nvtx, Release 0.2.4

nvtx gives your tools to annotate your Python code (or automatically annotates it for you). Annotated code can be
analyzed and visualized by third-party applications such as NVIDIA Nsight Systems. For example, you can produce
detailed timelines of execution of Python programs annotated with nvtx:

CONTENTS 1

https://developer.nvidia.com/nsight-systems

nvtx, Release 0.2.4

2 CONTENTS

CHAPTER

ONE

QUICK DEMO

Here is an example of using the annotation tools provided by nvtx:

example_lib.py

import time
import nvtx

def sleep_for(i):
time.sleep(i)

@nvtx.annotate()
def my_func():

time.sleep(1)

with nvtx.annotate("for_loop", color="green"):
for i in range(5):

sleep_for(i)
my_func()

Adding annotations to your code doesn’t achieve anything by itself. To derive something useful from annotated code,
you’ll need to use a third-party application that supports NVTX annotations. The command below uses the Nsight
Systems command-line interface to collect information from the annotated code:

nsys profile python demo.py

This produces a .qdrep file containing information about the annotated code. Opening that file in the Nsight Systems
GUI, you can see a timeline of execution of your program:

3

nvtx, Release 0.2.4

4 Chapter 1. Quick Demo

CHAPTER

TWO

CONTENTS

2.1 Installation

nvtx requires Python >=3.6,<3.10, and is tested on Linux only.

Install using conda (preferred):

conda install -c conda-forge nvtx

Install using pip:

python -m pip install nvtx

Or conda:

conda install -c conda-forge nvtx

2.2 Tools for annotating code

2.2.1 annotate

The annotate() function annotates a code range, i.e., one or more statements. Each code range may have a message
and a color associated with it. This makes it easy to distinguish ranges when visualizing them. annotate can be used
in two ways:

As a decorator:

@nvtx.annotate(message="my_message", color="blue")
def my_func():

pass

As a context manager:

with nvtx.annotate(message="my_message", color="green"):
pass

When used as a decorator, the message argument defaults to the name of the function being decorated:

@nvtx.annotate() # message defaults to "my_func"
def my_func():

pass

5

nvtx, Release 0.2.4

2.2.2 start_range and end_range

In certain situations, it is impossible to use annotate(), e.g., when a code range spans multiple functions or in asyn-
chronous code. In such cases, the start_range() and end_range() functions can be used instead.

The start_range() function is called at the beginning of a code range, and returns a handle. The handle is passed to
the end_range() function, which is called at the end of the code range.

rng = nvtx.start_range(message="my_message", color="blue")
... do something ...
nvtx.end_range(rng)

2.2.3 mark

The mark() function marks an instantaneous event in the execution of a program. For example, you may want to mark
when an exceptional event occurs:

try:
something()

except SomeError():
nvtx.mark(message="some error occurred", color="red")
... do something else ...

2.2.4 Domains

In addition to a message and a color, annotations can also have a domain associated with them. This allows grouping
annotations.

import time
import nvtx

@nvtx.annotate(color="blue", domain="Domain_1")
def func_1():

time.sleep(1)

@nvtx.annotate(color="green", domain="Domain_2")
def func_2():

time.sleep(1)

@nvtx.annotate(color="red", domain="Domain_1")
def func_3():

time.sleep(1)

func_1()
func_2()
func_3()

The timeline generated from the above:

6 Chapter 2. Contents

nvtx, Release 0.2.4

Domains should be used sparingly as they are expensive to create. It is typically recommended to use a single domain
per library. For grouping of annotations within a library, e.g., distinguishing annotations relating to compute, memory
and I/O, use Categories instead.

2.2.5 Categories

Categories allow grouping of annotations within a domain.

import time
import nvtx

@nvtx.annotate(color="blue", domain="Domain_1", category="Cat_1")
def func_1():

time.sleep(1)

@nvtx.annotate(color="green", domain="Domain_1", category="Cat_2")
def func_2():

time.sleep(1)

@nvtx.annotate(color="red", domain="Domain_2", category="Cat_1")
def func_3():

time.sleep(1)

@nvtx.annotate(color="red", domain="Domain_2", category=2)
def func_4():

time.sleep(1)

func_1()
func_2()
func_3()
func_4()

In the example above, func_1 and func_2 are grouped under the domain Domain1, but under different categories within
that domain.

Although func_1 and func_3 are both grouped under a category named Cat_1, they are unrelated as each domain
maintains its own categories.

Unlike domains, categories are not expensive to create and manage. Thus, you should prefer categories for maintaining
several groups of annotations.

2.2. Tools for annotating code 7

nvtx, Release 0.2.4

2.3 Automatic function annotation

Annotating code manually is not always desirable, for example, when you have lots of functions to annotate, or when
you want to capture information from third-party libraries.

nvtx can automatically annotate each function call in your program. Note that doing this adds a tiny amount of overhead
to each and every function invocation, which can significantly impact the overall runtime (by more than 10x).

This can give you lots of useful information that manual annotation cannot

2.3.1 Command-line interface

You can invoke nvtx as a command-line script, which annotates every function call, with no changes to the source
code:

python -m nvtx script.py

2.3.2 The Profile class

You can also use Profile to enable and disable automatic function annotation in different parts of your program:

pr = nvtx.Profile()
pr.enable() # begin annotating function calls
-- do something --
pr.disable() # stop annotating function calls

2.4 Reference

8 Chapter 2. Contents

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

9

	Quick Demo
	Contents
	Installation
	Tools for annotating code
	annotate
	start_range and end_range
	mark
	Domains
	Categories

	Automatic function annotation
	Command-line interface
	The Profile class

	Reference

	Indices and tables

